

№ 69

$Rhizoctonia\ amygdalispora$

Figures 1-4

Thanatephorus amygdalisporus Hauerslev, P. Roberts & Å. Strid 1996 [1 : 217] $\equiv Rhizoctonia \ amygdalispora$ (Hauerslev, P. Roberts & Å. Strid) Oberw., R. Bauer, Garnica & R. Kirschner 2013 [2 : 774]

Basidiome effused, loosely adherent, when dry becoming finely granulose to hypochnoid, up to 0.1 (0.2) mm thick.

Hymenophore (dry) discontinuous, at beginning pruinose then finely tufted, reticulated, porulose, cream to pale yellow to pale olivaceous yellow.

 ${\bf Subiculum}\ {\rm poorly}\ {\rm developed},\ {\rm almost\ indistinct}.$

Margin indeterminate, thinning out, pruinose.

Hyphal system monomitic; all hyphae with simple-septated primary septa, often branched at right angles. Subhymenial hyphae (4.5) 6–9 (10) μ m in diam., regular to slightly swollen, thin-walled, subhyaline. Subicular hyphae (5.5) 6–8 (9) μ m wide, mostly regular, relatively short-celled, with thin or thickening wall, subhyaline to pale yellowish.

Cystidia absent.

Basidia botryose, 14–18×8–11 μ m; with (2) 4 sterigmata up to 7 μ m long and 1.5–2 μ m wide at the base.

Basidiospores amygdaliform in side view, fusiform or narrowly pyriform in frontal view, $9.5-18\times5.6-8.2$ µm, Q=1.5-2.4, smooth, with slightly thickening wall, subhyaline, repetitive; apiculus prominent.

Chemical reactions: IKI-; CB: hyphae cyanophilous.

Incrustation: none.

Comments

This single collection, found in reviewing specimens stored under $Rhizoctonia\ fusispora$, differs from the original description of $Rhizoctonia\ amygdalispora$ in Knudsen and Hansen [1] by the subicular hyphae reported to be «ochraceous to brown, with long hyphal compartments [...] 3–6 μ m diam». However, the spores are typical for the species and unique with this shape in the genus.

The species, up to now, was reported only for Northern Europe, but I think that more specimens may be hidden under *Rhizoctonia fusispora* because they look quite the same both macro and micro and the spores are different but looks similar at first sight (biapiculate).

Specimens examined

SWITZERLAND — **Ticino** – Val Piora, Mottone, on bark of a lying, rather hard twig of *Alnus viridis*, leg. E. Martini, 29.VIII.2010 (em-11252)

References

- KNUDSEN, H. AND HANSEN, L. (1996). 'Nomenclatural notes to Nordic Macromycetes vol. 1 & 3'. Nordic Journal of Botany, 16 (2): 211–221
- [2] OBERWINKLER, F. ET AL. (2013). 'Taxonomic re-evaluation of the *Ceratobasidium-Rhizoctonia* complex and *Rhizoctonia butinii*, a new species attacking spruce'. *Mycological Progress*, 12 (4): 763–776. DOI: http://dx.doi.org/10.1007/s11557-013-0936-0
- [3] ROBERTS, P. (1999). Rhizoctonia-forming fungi: a taxonomic guide. Kew. 239 p.

Fig. 1: Detail of the hymenophore. Image width = 9 mm [em-11252]

Fig. 2: Dried basidiome: detail of the hymenophore. Image width = 9 mm [em-11252]

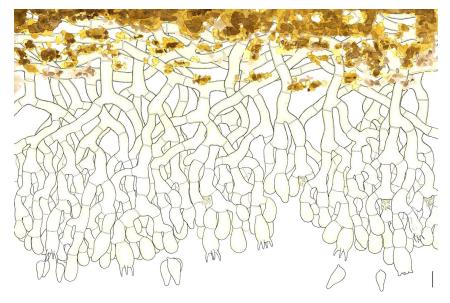


Fig. 3: Vertical section through the basidiome. Bar = 10 μm [em-11252]

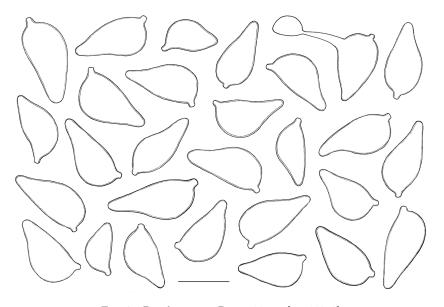


Fig. 4: Basidiospores. Bar = $10 \ \mu m \ [em-11252]$

Excerpts from Crusts & Jells

Descriptions and reports of resupinate Aphyllophorales and Heterobasidiomycetes

Authored and published by

ELIA MARTINI Via ai Ciòss 21 CH-6676 Bignasco Switzerland

Email: emart@aphyllo.net http://www.aphyllo.net

Issue № 69:

 $Rhizoctonia\ amygdalispora$ Released on: $27^{\rm th}$ April, 2016

© E. Martini

